On the Convergence of Spectral Clustering on Random Samples: The Normalized Case
نویسندگان
چکیده
Given a set of n randomly drawn sample points, spectral clustering in its simplest form uses the second eigenvector of the graph Laplacian matrix, constructed on the similarity graph between the sample points, to obtain a partition of the sample. We are interested in the question how spectral clustering behaves for growing sample size n. In case one uses the normalized graph Laplacian, we show that spectral clustering usually converges to an intuitively appealing limit partition of the data space. We argue that in case of the unnormalized graph Laplacian, equally strong convergence results are difficult to obtain.
منابع مشابه
Limits of Spectral Clustering
An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult t...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملWeighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملA variational approach to the consistency of spectral clustering
This paper establishes the consistency of spectral approaches to data clustering. We consider clustering of point clouds obtained as samples of a ground-truth measure. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. We investigate the spectral convergence of both unnormalized and normalized graph Laplacians to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004